Triangle Divider

triangleMeasure.png

Sides length or Angle :
















এখানে যে যে সূত্র ব্যাবহার হয়েছে :

  1. Special thanks to Ranjit Saha Sir for providing the valuable formula.
    Connect with Ranjit Saha on Facebook.

  2. $$ c^2 = a^2 + b^2 - 2ab \cos(\gamma) $$ where: $$ \begin{align*} c & : \text{third side length} \\ a & : \text{first side length} \\ b & : \text{second side length} \\ \gamma & : \text{angle opposite third side} \end{align*} $$
  3. $$ \text{Area}(\triangle) = \frac{1}{2} \cdot a \cdot b \cdot \sin(C) $$ where: $$ \begin{align*} \text{Area}(\triangle) & : \text{Area of the triangle} \\ a & : \text{Length of side } a \\ b & : \text{Length of side } b \\ C & : \text{Angle opposite side } c \end{align*} $$
  4. \[ A = \sqrt{s \cdot (s - a) \cdot (s - b) \cdot (s - c)} \] where \(s\) is the semi-perimeter, calculated as: \[ s = \frac{a + b + c}{2} \]
  5. $$ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} $$
  6. $$ c = a \cos(B) + b \cos(A) $$ $$ \begin{align*} \\ a & : \text{length of side opposite angle } A \\ b & : \text{length of side opposite angle } B \\ c & : \text{length of side opposite angle } C \\ A & : \text{measure of angle opposite side } a \\ B & : \text{measure of angle opposite side } b \\ C & : \text{measure of angle opposite side } c \\ \end{align*} $$