Quad Curve Divider

d2.png

বৃত্তাংশ গুলোর উচ্চতা ↓


এখানে যে যে সূত্র ব্যাবহার হয়েছ:

  1. $$ c^2 = a^2 + b^2 - 2ab \cos(\gamma) $$ where: $$ \begin{align*} c & : \text{third side length} \\ a & : \text{first side length} \\ b & : \text{second side length} \\ \gamma & : \text{angle opposite third side} \end{align*} $$
  2. $$ \text{Area}(\triangle) = \frac{1}{2} \cdot a \cdot b \cdot \sin(C) $$ where: $$ \begin{align*} \text{Area}(\triangle) & : \text{Area of the triangle} \\ a & : \text{Length of side } a \\ b & : \text{Length of side } b \\ C & : \text{Angle opposite side } c \end{align*} $$
  3. \[ A = \sqrt{s \cdot (s - a) \cdot (s - b) \cdot (s - c)} \] where \(s\) is the semi-perimeter, calculated as: \[ s = \frac{a + b + c}{2} \]
  4. \[ \text{Radius} = \frac{c^2}{8h_{\text{segment}}} + \frac{h_{\text{segment}}}{2} \] \[ \text{Segment Area:} \quad A_{\text{segment}} = \frac{1}{2}r^2(\theta - \sin\theta) \] \[ \text{Segment Height:} \quad h_{\text{segment}} = r - \sqrt{r^2 - \left(\frac{c}{2}\right)^2} \] \[ \text{Chord Length:} \quad c = 2r\sin\left(\frac{\theta}{2}\right) \] \[ \text{Arc Length:} \quad s = r\theta \] \[ \text{Sector Area:} \quad A_{\text{sector}} = \frac{1}{2} r^2 \theta \] \[ \text{Area:} \quad \frac{1}{2} r^2 \left(\theta - \sin\theta\right) = 0.5 r^2 \left(\theta - \sin\theta\right) \] \[ \text{Perimeter:} \quad r \left(\theta + 2 \sin\left(\frac{\theta}{2}\right)\right) \]\[ = r \left(\theta + 2 \sin\left(0.5 \theta\right)\right) \]